A Method of Estimating the *p*-adic Sizes of Common Zeros of Partial Derivative Polynomials Associated with an *n*th Degree Form

¹Sapar S.H. & ²Mohd Atan K.A.

¹Mathematics Department, Faculty of Science ²Laboratory of Theoretical Mathematics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia E-mail: ¹sitihas@fsas.upm.edu.my; ²kamel@putra.upm.edu.my

ABSTRACT

Let $\underline{X} = (x_1, x_2, ..., x_n)$ be a vector in a space Z^n where Z is the ring of integers and let q be a positive integer, f a polynomial in \underline{x} with coefficients in Z. The exponential sum associated with f is defined as

$$S(f;q) = \sum \exp(2\pi i f(x)/q)$$

where the sum is taken over a complete set of residues modulo q. The value of S(f;q) has been shown to depend on the estimate of the cardinality |V|, the number of elements contained in the set

$$V = \{ \underline{x} \bmod q \mid \underline{f}_x \equiv \underline{0} \bmod q \}$$

where $\underline{f}_{\underline{x}}$ is the partial derivatives of f with respect to \underline{x} . To determine the cardinality of V, the information on the p-adic sizes of common zeros of the partial derivatives polynomials need to be obtained.

This paper discusses a method of determining the *p*-adic sizes of the components of (ξ, η) , a common root of partial derivatives polynomial of f(x,y) in of degree n, where n is odd based on the p-adic Newton polyhedron technique associated with the polynomial. The polynomial of degree n is of the form

$$f(x, y) = ax^{n} + bx^{n-1}y + cx^{n-2}y^{2} + sx + ty + k$$

Keywords: Exponential sums, Cardinality, p-adic sizes, Newton polyhedron 2000 Mathematics Subject Classification: 11D45; 11T23

INTRODUCTION

In this paper, the notations Z_p , Ω_p and ord_px are used to denote the ring of p-adic integers, completion of the algebraic closure Q_p the field of rational p-adic numbers and the highest power of p, which divides x. For each prime p, let $\underline{f} = (f_1, f_2,, f_n)$ be an n-tuple polynomials in $Z_p[\underline{x}]$, where Z_p is the ring of p-adic integers and $\underline{x} = (x_1, x_2, ..., x_n)$.

The estimation of |V| has been the subject of many research in number theory, one of which is in finding the best possible estimate to multiple exponential sums of the form

$$S(f;q) = \sum_{\underline{x} \bmod q} \exp\left(\frac{2\pi i f}{q}\right)$$
 where $f(\underline{x})$ is a polynomial in $Z[\underline{x}]$ and the sum is taken over a complete set of residues x modulo a positive integer q .

Loxton and Vaughn (1985) are among the researchers who investigated S(f;q) where f is a non-linear polynomial in $Z[\underline{x}]$. They found that the estimate of S(f;q) depends on the value of |V|, the number of common zeros of the partial derivatives of f with respect to \underline{x} modulo q. By using this result, the estimate of S(f;q) was found by other researchers such as Mohd Atan (1986). He considered in particular the non-linear polynomial $f(x,y)=ax^3+bx^2y+cx+dy+e$. He found that the p-adic sizes for the zero (ξ,η) of this polynomial is $ord_p\xi\geq \frac{1}{2}(\alpha-\delta)$ and $ord_p\eta\geq \frac{1}{2}(\alpha-\delta)$ with $\delta=\max\left\{ord_p3a,\frac{3}{2}ord_pb\right\}$.

Mohd Atan and Abdullah (1992) considered a cubic polynomial of the form

$$f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3 + kx + my + n$$

and obtained the p-adic sizes for the root (ξ, η) of this polynomial as $ord_p \xi \ge \frac{1}{2}(\alpha - \delta)$

and
$$ord_p \eta \ge \frac{1}{2}(\alpha - \delta)$$
 with $\delta = \max \left\{ ord_p 3a, ord_p b, ord_p c, ord_p 3d \right\}$.

Chan and Mohd Atan (1997) investigated a polynomial of a higher degree than the one considered above in $Z_p[x,y]$ of the form

$$f(x, y) = ax^{4} + bx^{3}y + cx^{2}y^{2} + dxy^{3} + ey^{4} + mx + ny + k$$

and showed that for a root (ξ, η) of f(x,y), the p-adic sizes for the zero (ξ, η) of this

polynomialis
$$\operatorname{ord}_{p} \xi \geq \frac{1}{3} (\alpha - \delta)$$
 and $\operatorname{ord}_{p} \eta \geq \frac{1}{3} (\alpha - \delta)$ with

$$\delta = \max \left\{ ord_{p} a, ord_{p} b, ord_{p} c, ord_{p} d, ord_{p} e \right\}.$$

Heng and Mohd Atan (1999) determined the cardinality associated with the partial derivatives functions of the cubic form

$$f(x,y)=ax^3+bx^2y+cx+dy+e$$

In their work, they attempted to find a better estimate by looking at the maximum number of common zeros associated with the partial derivatives $f_x(x,y)$ and $f_y(x,y)$. A sharper result was obtained with δ similar to the one considered by Mohd Atan (1986). However, the general result for polynomials of several variables is less complete.

In this paper, a method of determining the p-adic sizes of the component (ξ, η) a common root of partial polynomial of f(x,y) in of degree n where n is odd is discussed. The polynomial considered in this paper is of the form

$$f(x,y)=ax^{n}+bx^{n-1}y+cx^{n-2}y^{2}+sx+ty+k.$$

The desired estimate is arrived at by examining the combinations of the indicator diagrams associated with the Newton polyhedrons of f_x and f_y developed by Mohd Atan and Loxton (1986). It is an analogue of the p-adic Newton polygon developed by Koblitz (1977).

p-adic Orders of Zeros of a Polynomial

Mohd Atan and Loxton (1986) conjectured that to every point of intersection of the combination of the indicator diagrams associated with the Newton polyhedrons of a pair of polynomials in $Z_p[x,y]$, there exist common zeros of both polynomials whose padic orders correspond to this point. The conjecture is as follows:

Conjecture

Let p be a prime. Suppose f and g are polynomials in $Z_p[x, y]$. Let (μ, λ) be a point of intersection of the indicator diagrams associated with f and g. Then there are ξ and η in Ω_p satisfying $f(\xi, \eta) = g(\xi, \eta) = 0$ and $ord_p \xi = \mu$, $ord_p \eta = \lambda$.

A special case of this conjecture was proved by Mohd Atan and Loxton (1986). Sapar and Mohd Atan (2002) improved on this result as follows:

Theorem 2.1

Let p be a prime. Suppose f and g are polynomials in $\mathbb{Z}_p[x, y]$. Let (μ, λ) be a point of intersection of the indicator diagrams associated with f and g at the vertices or simple points of intersections. Then there are ξ and η in Ω_p satisfying $f(\xi, \eta) = g(\xi, \eta) = 0$ and $\operatorname{ord}_n \xi = \mu$, $\operatorname{ord}_n \eta = \lambda$.

In Theorems 2.5 and 2.6 that follow, the p-adic sizes of common zeros of partial derivatives of the polynomial $f(x, y) = ax^n + bx^{n-1}y + cx^{n-2}y^2 + sx + ty + k$ where n is odd are given. First, the the following assertions are made

Lemma 2.1

Let n > 1 be a positive integer and p > n be a prime. Let a, b, c, s and t be in Z_p and λ_1 , λ_2 are the zeros of $h(\lambda_n) = 4c^2\lambda_n^2 + 4bc\lambda_n + (n-1)^2b^2 - 4n(n-2)ac$ and let

$$\alpha_{1} = \frac{(n-1)b + 2\lambda_{1}c}{2(na + \lambda_{1}b)}$$
 and $\alpha_{2} = \frac{(n-1)b + 2\lambda_{2}c}{2(na + \lambda_{2}b)}$

If $ord_p b^2 > ord_p ac$, then $ord_p \alpha_i = ord_p (\alpha_1 - \alpha_2) = \frac{1}{2} ord_p \frac{c}{a}$, for i = 1,2 and

$$ord_{p}(\alpha_{1} + \alpha_{2}) = ord_{p} \frac{b}{a}$$
.

Proof:

$$\lambda_1 = \frac{-b + \sqrt{n(n-2)(4ac - b^2)}}{2c}$$
 and $\lambda_2 = \frac{-b - \sqrt{n(n-2)(4ac - b^2)}}{2c}$

are the zeros of $h(\lambda)=4c^2\lambda^2+4bc\lambda+(n-1)^2b^2-4n(n-2)ac$. Then

$$\lambda_1 c = \frac{-b + \sqrt{n(n-2)(4ac - b^2)}}{2}$$

Since $ord_n b^2 > ord_n ac$ and p > n, we have

$$ord_p \sqrt{n(n-2)(4ac-b^2)} = \frac{1}{2} ord_p ac$$

Hence,
$$ord_p \left(-b + \sqrt{n(n-2)(4ac-b^2)}\right) = \frac{1}{2} ord_p ac$$

Thus,
$$ord_p 2\lambda_1 c = \frac{1}{2} ord_p ac < ord_p b$$
.

By the same method, it can be shown that

$$ord_{p} 2\lambda_{2} c = \frac{1}{2} ord_{p} ac < ord_{p} b.$$

Therefore,

$$ord_{p}((n-1)b + 2\lambda_{i}c) = ord_{p}2\lambda_{i}c = \frac{1}{2}ord_{p}ac , i = 1,2.$$

$$(1)$$

Consider that

$$\lambda_1 b = b \left[\frac{-b + \sqrt{n(n-2)(4ac - b^2)}}{2c} \right]$$

Then,

$$ord_{p} \lambda_{1} b = ord_{p} b + ord_{p} [-b + \sqrt{n(n-2)(4ac-b^{2})}] - ord_{p} 2c$$

.

Since $ord_p b > \frac{1}{2} ord_p ac$ and p > n, we have

$$ord_{p} \lambda b = ord_{p} b + \frac{1}{2} ord_{p} ac - ord_{p} c$$

$$> \frac{1}{2} ord_{p} ac + \frac{1}{2} ord_{p} ac - ord_{p} c$$

$$= ord a.$$

Thus, $ord_{p} \lambda_{1} b > ord_{p} a$

Again by the same method, we can show that $ord_{p}\lambda_{2}b > ord_{p}a$

Therefore, we obtain that

$$ord_{p}2(na+\lambda_{i}b) = ord_{p}a, i=1,2$$
(2)

From (1) and (2),

$$ord_{p}\alpha_{i} = ord_{p}\left(\frac{(n-1)b + 2\lambda_{i}c}{2(na + \lambda_{i}b)}\right), i = 1,2$$

$$= \frac{1}{2}ord_{p}ac - ord_{p}a$$

.

That is,
$$\operatorname{ord}_{p} \alpha_{i} = \frac{1}{2} \operatorname{ord}_{p} \frac{c}{a}, i = 1,2$$
 (3)

It can be shown that

$$\alpha_{1} - \alpha_{2} = \frac{(\lambda_{1} - \lambda_{2})(2nac - (n-1)b^{2})}{2(na + \lambda_{1}b)(na + \lambda_{2}b)}$$

with
$$\lambda_1 - \lambda_2 = \frac{\sqrt{n(n-2)(4ac - b^2)}}{c}$$

Then,

$$ord_{p}(\alpha_{1} - \alpha_{2}) = ord_{p}\sqrt{n(n-2)(4ac-b^{2})} - ord_{p}c + ord_{p}(2nac-(n-1)b^{2})$$

$$-ord_{p}2(na + \lambda_{1}b) - ord_{p}(na + \lambda_{2}b)$$

Since p > n, $ord_p b^2 > ord_p ac$ and from (2), we have

$$ord_{p}(\alpha_{1}-\alpha_{2}) = \frac{1}{2}ord_{p}ac - ord_{p}c + ord_{p}ac - 2ord_{p}a$$
$$= \frac{1}{2}\left(ord_{p}c - ord_{p}a\right)$$

That is,
$$ord_p(\alpha_1 - \alpha_2) = \frac{1}{2} \left(ord_p \frac{c}{a} \right)$$
 (4)

From (3) and (4), we obtain

$$ord_{p}\alpha_{i} = ord_{p}(\alpha_{1} - \alpha_{2}) = \frac{1}{2}ord_{p}\frac{c}{a}$$
, $i = 1,2$.

Also, its can be shown that

$$\alpha_{1} + \alpha_{2} = \frac{\left[2n(n-1)ab + 4bc\lambda_{1}\lambda_{2} + (2nac + (n-1)b^{2})(\lambda_{1} + \lambda_{2})\right]}{2(na + \lambda_{1}b)(na + \lambda_{2}b)}$$

with
$$\lambda_1 \lambda_2 = \frac{(1-n)^2 b^2 - 4n(n-2)ac}{4c^2}$$
 and $\lambda_1 + \lambda_2 = -\frac{b}{c}$.

Then

$$ord_{p}(\alpha_{1} + \alpha_{2}) = ord_{p} \frac{2b}{c} ((2-n)(1+n)b^{2} + 6n(n-2)ac)$$
$$-ord_{p} 2(na + \lambda_{1}b) - ord_{p} (na + \lambda_{2}b)$$

Since p>n, $ord_{p}b^{2}>ord_{p}ac$ and from (2), we have

$$ord_{p}(\alpha_{1} + \alpha_{2}) = ord_{p} \frac{b}{c} + ord_{p} ac - 2ord_{p} a$$

$$= ord_{p} \frac{b}{a}$$

Therefore, we obtain

$$ord_{p}\alpha_{i} = ord_{p}(\alpha_{1} - \alpha_{2}) = \frac{1}{2}ord_{p}\frac{c}{a}$$
, bagi $i = 1,2$

and $ord_p(\alpha_1 + \alpha_2) = ord_p \frac{b}{a}$ as asserted.

In the Lemma 2.2 and Theorem 2.2,

$$\alpha_1 = \frac{(n-1)b + 2\lambda_1 c}{2(na + \lambda_1 b)}, \quad \alpha_2 = \frac{(n-1)b + 2\lambda_2 c}{2(na + \lambda_2 b)} \quad \text{where} \quad \lambda_1, \quad \lambda_2 \text{ are the zeros of}$$

$$h(\lambda) = 4c^2 \lambda^2 + 4bc\lambda + (n-1)^2 b^2 - 4n(n-2)ac \text{ .Then } \quad \alpha_1 \neq \alpha_2 \quad \text{because of}$$

$$\lambda_1 \neq \lambda_2 \quad .$$

Lemma 2.2

Suppose U, V in Ω_p x Ω_p . Let n>1 be a positive integer and p>n be a prime, a, b and c in Z_p .

If $ord_{p}b^{2}>ord_{p}ac$, then

$$ord_{p}(\alpha_{1}V - \alpha_{2}U) = ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2}(U+V))}] - ord_{p}a.$$

Proof

$$ord_{p}(\alpha_{1}V - \alpha_{2}U) = ord_{p}\left(\frac{(n-1)b + 2\lambda_{1}c}{2(na + \lambda_{1}b)}V - \frac{(n-1)b + 2\lambda_{2}c}{2(na + \lambda_{2}b)}U\right)$$

$$= ord_{p}\left[(n-1)b + 2\lambda_{1}c\right](na + \lambda_{2}b)V - [(n-1)b + 2\lambda_{2}c](na + \lambda_{1}b)U\right]$$

$$- ord_{p}2(na + \lambda_{1}b) - ord_{p}2(na + \lambda_{2}b)$$
(1)

Now,

$$\lambda_1 = \frac{-b + \sqrt{n(n-2)(4ac - b^2)}}{2c}$$
 and $\lambda_2 = \frac{-b - \sqrt{n(n-2)(4ac - b^2)}}{2c}$

are the zeros of $h(\lambda) = 4c^2\lambda^2 + 4bc\lambda + (n-1)^2b^2 - 4n(n-2)ac$. It can be shown that, with the values of λ_1 and λ_2 ,

$$[(n-1)b+2\lambda_1 c](na+\lambda_2 b)V - [(n-1)b+2\lambda_2 c](na+\lambda_1 b)U$$

$$= \left[2nac - (n-1)b^{2} \left[\frac{(n-2)b}{2c} \left(U - V\right) + \frac{\sqrt{n(n-2)(4ac - b^{2})}}{2c} \left(U + V\right)\right]\right].$$

Then from (1).

$$ord_{p}(\alpha_{1}V - \alpha_{2}U) = ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac - b^{2})}(U+V)]$$

$$+ ord_{p}\left[\frac{2nac - (n-1)b^{2}}{2c}\right] - ord_{p}2(na + \lambda_{1}b) - ord_{p}2(na + \lambda_{2}b)$$

Since p>n and $ord_nb^2>ord_nac$, we have

$$ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2})}(U+V)]$$

+ $ord_{p}ac - ord_{p}c - 2ord_{p}a$

Hence.

$$ord_{p}(\alpha_{1}V - \alpha_{2}U) = ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2})}(U+V)] - ord_{p}a$$

as asserted.

In the following theorem, we give the p-adic sizes of the variables x, y in U,V by using the assertions in Lemma 2.1 and Lemma 2.2

Theorem 2.2

Suppose
$$U, V$$
 in $\Omega_p \times \Omega_p$ with $U = x^{\frac{n-1}{2}} + \alpha_1 x^{\frac{n-3}{2}} y$ and $V = x^{\frac{n-1}{2}} + \alpha_2 x^{\frac{n-3}{2}} y$, where n is odd. Let $p > n$ be a prime, a, b and c in Z_p and $ord_p b^2 > ord_p ac$.

If
$$ord_{p}(n-2)b(U-V) > ord_{p}\sqrt{n(n-2)(4ac-b^{2})}(U+V)$$
, then $ord_{p}x \ge \frac{2}{n-1}W$ and

$$ord_{p}y \ge \frac{2}{n-1} \left[W - \frac{1}{2}ord_{p} \frac{cb^{(n-3)}}{a^{(n-2)}} \right]_{\text{with }} W = ord_{p}U = ord_{p}V$$

Proof

From
$$U = x^{\frac{n-1}{2}} + \alpha_1 x^{\frac{n-3}{2}} y$$
 and $V = x^{\frac{n-1}{2}} + \alpha_2 x^{\frac{n-3}{2}} y$, we have

$$x = \left(\frac{\alpha_1 V - \alpha_2 U}{\alpha_1 - \alpha_2}\right)^{\frac{2}{n-1}} \text{ and } y = \frac{U - V}{(\alpha_1 - \alpha_2)x^{\frac{n-3}{2}}}.$$

Then,

$$ord_{p} x = \frac{2}{n-1} ord_{p} (\alpha_{1} V - \alpha_{2} U) - \frac{2}{n-1} ord_{p} (\alpha_{1} - \alpha_{2})$$
(1)

and
$$ord_p y = ord_p (U - V) - ord_p (\alpha_1 - \alpha_2) - \frac{n-3}{2} ord_p x$$
 (2)

From (1), Lemma 2.1 and Lemma 2.2, we obtain

$$ord_{p}x = \frac{2}{n-1}ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2})}(U+V)]$$
$$-\frac{2}{n-1}ord_{p}a - \frac{2}{n-1}\left(\frac{1}{2}ord_{p}\frac{c}{a}\right)$$

Now, from hypothesis

$$\min \{ ord_{p}(n-2)b(U-V), ord_{p}\sqrt{n(n-2)(4ac-b^{2})}(U+V) \}$$

$$= ord_{p}\sqrt{n(n-2)(4ac-b^{2})}(U+V)$$

Hence.

$$ord_{p} x = \frac{2}{n-1} ord_{p} \sqrt{n(n-2)(4ac-b^{2})}(U+V) - \frac{1}{n-1} ord_{p} ac$$
.

Since $ord_p b^2 > ord_p ac$ and p > n, we have

$$ord_{p} x = \frac{2}{n-1} ord_{p} (U+V) + \frac{1}{n-1} (ord_{p} ac - ord_{p} ac)$$

That is,

$$ord_{p} x = \frac{2}{n-1} ord_{p} (U+V)$$
(3)

Let $W=ord_{p}U=ord_{p}V$, we have

$$ord_{p} x \ge \frac{2}{n-1} W$$

From (3),

$$ord_{p} x^{\frac{n-1}{2}} = ord_{p} (U + V)$$

But
$$ord_p(U+V) = ord_p\left(2x^{\frac{n-1}{2}} + (\alpha_1 + \alpha_2)x^{\frac{n-3}{2}}y\right)$$
.

Therefore.

$$ord_{p}x \leq ord_{p}(\alpha_{1} + \alpha_{2})y$$
.

Thus, from equation (2), Lemma 2.1 and Lemma 2.2, we have

$$\frac{n-1}{2}ord_{p}y \ge ord_{p}(U-V) - \frac{1}{2}ord_{p}\frac{c}{a} - \left(\frac{n-3}{2}\right)ord_{p}\frac{b}{a}.$$

Let $W = ord_n U = ord_n V$, we have

$$ord_{p} y \ge \frac{2}{n-1} \left[W - \frac{1}{2} ord_{p} \frac{c}{a} + \left(\frac{n-3}{2} \right) ord_{p} \frac{a}{b} \right]$$

$$= \frac{2}{n-1} \left[W - \frac{1}{2} ord_{p} \frac{cb^{(n-3)}}{a^{(n-2)}} \right]$$
(4)

Therefore,

$$ord_{p} x \ge \frac{2}{n-1} W \text{ and } ord_{p} y \ge \frac{2}{n-1} \left[W - \frac{1}{2} ord_{p} \frac{cb^{(n-3)}}{a^{(n-2)}} \right]$$

where $W = ord_p U = ord_p V$ as asserted.

Theorem 2.3 gives an estimate of the same variables in U,V under a different condition as given by the following lemma.

Lemma 2.3

Let n>0 and p be an odd prime, p>n and a, b, c in Zp with $ord_pb^2>ord_pac$. If U,V in $\Omega_p \times \Omega_p$ such that

$$ord_{p}(n-2)b(U-V) \le ord_{p}\sqrt{n(n-2)(4ac-b^{2})}(U+V)$$
, then $ord_{p}V = ord_{p}U$

and there exists q, w in Z_p such that

$$ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2})}(U+V)] = \beta + ord_{p}[(n-2)bq + \sqrt{n(n-2)(4ac-b^{2})}w]$$

where
$$\beta = ord_p V = ord_p U$$
 and $ord_p q = 0$ $ord_p w \ge ord_p b - \frac{1}{2} ord_p c$,.

Proof

From
$$ord_{p}(n-2)b(U-V) \le ord_{p}\sqrt{n(n-2)(4ac-b^{2})}(U+V)$$
, $p>n$ and

$$ord_p b^2 > ord_p ac$$
 we obtain

$$ord_{p}b + ord_{p}(U - V) \le \frac{1}{2}ord_{p}ac + ord_{p}(U + V)$$

Since $ord_{p}b^{2}>ord_{p}ac$, this inequality becomes

$$0 < ord_{p}b - \frac{1}{2}ord_{p}ac \le ord_{p}(U+V) - ord_{p}(U-V)$$

Therefore,

$$ord_{p}(U+V) > ord_{p}(U-V). \tag{1}$$

Now, $ord_p(U+V)$ - $ord_p(U-V) > 0$ implies that $ord_pU = ord_pV$. This is because if, $ord_pU \neq ord_pV$ we have $ord_p(U+V) - ord_p(U-V) = 0$.

Suppose
$$\beta = ord_p U = ord_p V$$
.

Then,

$$U = p^{\beta}k$$
 and $V = p^{\beta}l$ with $ord_{p}k=0$ and $ord_{p}l=0$.

Thus,

$$U + V = p^{\beta}(k+l)$$
 and $U - V = p^{\beta}(k-l)$.

From (1), we obtain

$$ord_n(k+l) > ord_n(k-l)$$
.

This means that,
$$ord_{p}[(k+l)+(k-l)] = ord_{p}(k-l)$$

That is.

$$ord_p k = ord_p (k-l) = 0$$

Therefore,

$$ord_n(k+l) > 0$$

Suppose q = k-l and w=k+l.

$$ord_{p}(U+V) - ord_{p}(U-V) = \beta + ord_{p}(k+l) - \beta - ord_{p}(k-l)$$

$$= ord_{p}(k+l) = ord_{p}w$$

But
$$ord_p(U+V) - ord_p(U-V) \ge ord_p b - \frac{1}{2} ord_p ac$$
.

Then,

$$ord_p w \ge ord_p b - \frac{1}{2} ord_p ac$$
.

Hence,

$$ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2})}(U+V)]$$

$$= ord_{p}[(n-2)bp^{\beta}q + \sqrt{n(n-2)(4ac-b^{2})}p^{\beta}w]$$

with $ord_p q=0$ and $ord_p w \ge ord_p b - \frac{1}{2} ord_p c$.

The right expression becomes

$$ord_{p} p^{\beta} [(n-2)bq + \sqrt{n(n-2)(4ac - b^{2})}w]$$

$$= \beta + ord_{p} [(n-2)bq + \sqrt{n(n-2)(ac - b^{2})}w]$$

with $\beta = ord_p U = ord_p V$, $ord_p q = 0$ and $ord_p w \ge ord_p b - \frac{1}{2} ord_p ac$ as asserted.

Theorem 2.3

Suppose U, V in $\Omega_p \times \Omega_p$ with $U = x^{\frac{n-1}{2}} + \alpha_1 x^{\frac{n-3}{2}} y$ and $V = x^{\frac{n-1}{2}} + \alpha_2 x^{\frac{n-3}{2}} y$ where n is odd. Let p > n be a prime, a, b and c in Z_p and $ord_p b^2 > ord_p ac$.

If
$$ord_{p}(n-2)b(U-V) \le ord_{p}\sqrt{n(n-2)(4ac-b^{2})}(U+V)$$
 then $ord_{p}x \ge \frac{2}{n-1}ord_{p}W$
and $ord_{p}y \ge \frac{2}{n-1} \left[W - \frac{1}{2}ord_{p}\frac{cb^{(n-3)}}{a^{(n-2)}}\right]$ with $W = ord_{p}V = ord_{p}U$.

Proof

Suppose
$$x = \left(\frac{\alpha V - \alpha_2 U}{\alpha_1 - \alpha_2}\right)^{\frac{2}{\gamma_{n-1}}}$$
 and $y = \frac{U - V}{(\alpha_1 - \alpha_2)x^{\frac{n-3}{2}}}$.

Then.

$$ord_{p} x = \frac{2}{n-1} ord_{p} (\alpha_{1} V - \alpha_{2} U) - \frac{2}{n-1} ord_{p} (\alpha_{1} - \alpha_{2})$$
 (1)

and
$$\operatorname{ord}_{p} y = \operatorname{ord}_{p} (U - V) - \operatorname{ord}_{p} (\alpha_{1} - \alpha_{2}) - \frac{n-3}{2} \operatorname{ord}_{p} x$$
 (2)

From (1) and by Lemma 2.1 and Lemma 2.2, we have

$$ord_{p} x = \frac{2}{n-1} ord_{p} [(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2})} (U+V)]$$
$$-\frac{2}{n-1} ord_{p} a - \frac{2}{n-1} \left(\frac{1}{2} ord_{p} \frac{c}{a}\right)$$

By Lemma 2.3, there exists q and w in Z_p such that

$$ord_{p} x = \frac{2}{n-1} \left(\beta + ord_{p} [(n-2)bq + \sqrt{n(n-2)(4ac - b^{2})}w] \right) - \frac{1}{n-1} ord_{p} ac$$

with $\beta = ord_n V = ord_n U$, $ord_n q = 0$, and $ord_n w > 0$.

Suppose $W=\beta$, we find that

$$ord_{p}x \ge \frac{2}{n-1} \left(W + \min \left\{ ord_{p}b, \frac{1}{2}ord_{p}ac + ord_{p}w \right\} \right) - \frac{1}{n-1}ord_{p}ac$$

Then,

$$ord_{p} x \geq \frac{2}{n-1} W$$

From (1) and (2), we have

$$ord_{p}y = ord_{p}(U - V) - ord_{p}(\alpha_{1} - \alpha_{2}) - \frac{n-3}{2}ord_{p}x$$

$$= ord_{p}(U - V) - ord_{p}(\alpha_{1} - \alpha_{2}) - \frac{n-3}{2} \left[\frac{2}{n-1}ord_{p}(\alpha_{1}V - \alpha_{2}U) - \frac{2}{n-1}ord_{p}(\alpha_{1} - \alpha_{2}) \right]$$

By Lemma 2.2, we have

$$ord_{p}y = ord_{p}(U-V) - \frac{2}{(n-1)}ord_{p}(\alpha_{1} - \alpha_{2})$$

$$-\frac{(n-3)}{(n-1)}\left[ord_{p}[(n-2)b(U-V) + \sqrt{n(n-2)(4ac-b^{2}}(U+V)] - ord_{p}a\right]$$

Since
$$p > n$$
 and $ord_p(n-2)b(U-V) \le ord_p \sqrt{n(n-2)(4ac-b^2)}(U+V)$, we have

$$ord_{p}y = ord_{p}(U-V) - \frac{2}{(n-1)}ord_{p}(\alpha_{1} - \alpha_{2}) - \frac{(n-3)}{(n-1)}[ord_{p}b(U-V) - ord_{p}a]$$

By Lemma 2.1, we have

$$ord_{p}y = \frac{2}{n-1}ord_{p}(U-V) - \frac{2}{(n-1)} \left[\frac{1}{2}ord_{p} \frac{c}{a} \right] - \frac{(n-3)}{(n-1)} \left[ord_{p}b - ord_{p}a \right]$$

$$= \frac{2}{n-1} \left[ord_{p}(U-V) - \frac{1}{2}ord_{p} \frac{c}{a} - \frac{(n-3)}{2}ord_{p}b + \frac{(n-3)}{2}ord_{p}a \right]$$

$$= \frac{2}{n-1} \left[ord_{p}(U-V) - \frac{1}{2}ord_{p} \frac{cb^{(n-3)}}{a^{(n-2)}} \right]$$

Let $W = ord_{p}V = ord_{p}U$,

we have
$$ord_p y \ge \frac{2}{n-1} \left[W - \frac{1}{2} ord_p \frac{cb^{(n-3)}}{a^{(n-2)}} \right]$$
.

Therefore,

$$ord_{p} x \ge \frac{2}{n-1} ord_{p} V \text{ and } ord_{p} y \ge \frac{2}{n-1} \left[W - \frac{1}{2} ord_{p} \frac{cb^{(n-3)}}{a^{(n-2)}} \right]$$

with $W = ord_p U = ord_p V$ as asserted.

The following theorem gives explicit estimates of the x,y variables in U and V in terms of p-adic sizes of integers in Z_p . The proof utilizes the result obtained above.

Theorem 2.4

Suppose
$$U,V$$
 in $\Omega_p \times \Omega_p$ with $U = x^{\frac{n-1}{2}} + \alpha_1 x^{\frac{n-3}{2}} y$ and $V = x^{\frac{n-1}{2}} + \alpha_2 x^{\frac{n-3}{2}} y$ where n is odd. Let $p > n$ be a prime, a , b , c , s and t in Z_p , $ord_p b^2 > ord_p ac$, $\delta = \max\{ord_p a, ord_p b, ord_p c\}$ and $ord_p s, ord_p t \ge \alpha > \delta$.

If
$$\operatorname{ord}_{p} U = \frac{1}{2} \operatorname{ord}_{p} \frac{s + \lambda t}{na + \lambda b}$$
 and $\operatorname{ord}_{p} V = \frac{1}{2} \operatorname{ord}_{p} \frac{s + \lambda t}{na + \lambda b}$ then $\operatorname{ord}_{p} x \ge \frac{1}{n-1} (\alpha - (n-3)\delta)$ and $\operatorname{ord}_{p} y \ge \frac{1}{n-1} (\alpha - (n-3)\delta)$.

Proof

From
$$U = x^{\frac{n-1}{2}} + \alpha_1 x^{\frac{n-3}{2}} y$$
 and $V = x^{\frac{n-1}{2}} + \alpha_2 x^{\frac{n-3}{2}} y$, we have

$$x = \left(\frac{\alpha_1 V - \alpha_2 U}{\alpha_1 - \alpha_2}\right)^{\frac{2}{n-1}} \text{ and } y = \frac{U - V}{(\alpha_1 - \alpha_2)x^{\frac{n-3}{2}}}.$$

Then,

$$ord_{p}x = \frac{2}{n-1}ord_{p}(\alpha_{1}V - \alpha_{2}U) - \frac{2}{n-1}ord_{p}(\alpha_{1} - \alpha_{2})$$
 and

$$ord_{p}y = ord_{p}(U - V) - ord_{p}(\alpha_{1} - \alpha_{2}) - \frac{n-3}{2}ord_{p}x$$

From Theorems 2.2 and 2.3, we obtain that

$$ord_{p} x \ge \frac{2}{n-1} W \tag{1}$$

and
$$ord_{p} y \ge \frac{2}{n-1} \left[W - \frac{1}{2} ord_{p} \frac{cb^{(n-3)}}{a^{(n-2)}} \right]$$
 (2)

with
$$W = ord_p U = ord_p V$$
 and $ord_p U = \frac{1}{2} ord_p \frac{s + \lambda_1 t}{na + \lambda_1 b}$, $ord_p V = \frac{1}{2} ord_p \frac{s + \lambda_2 t}{na + \lambda_2 b}$.

From (1),

we have
$$\operatorname{ord}_{p} x \ge \frac{1}{n-1} \operatorname{ord}_{p} \left(\frac{s + \lambda_{i} t}{na + \lambda_{i} b} \right)$$
, $i = 1, 2$.

By proof of Lemma 2.1, $ord_{p} 2(na + \lambda_{i}b) = ord_{p}a$ for i = 1, 2.

Then,
$$\operatorname{ord}_{p} x \ge \frac{1}{n-1} [\operatorname{ord}_{p} (s + \lambda_{i} t) - \operatorname{ord}_{p} a], i = 1, 2.$$
 (3)

Suppose min $\{ord_p s, ord_p \lambda_i t\} = ord_p s$, i = 1, 2 we have $ord_p x \ge \frac{1}{n-1} \left(ord_p s - ord_p a \right)$

Then, by hypothesis,

$$ord_{p} x \ge \frac{1}{n-1} (\alpha - \delta)$$

Now from (2),

$$ord_{p} y \ge \frac{2}{n-1} \left[W - \frac{1}{2} ord_{p} \frac{cb^{(n-3)}}{a^{(n-2)}} \right]$$

$$= \frac{2}{n-1} \left[\frac{1}{2} ord_{p} \frac{s + \lambda_{2}t}{na + \lambda_{2}b} - \frac{1}{2} ord_{p} \frac{c}{a} + \left(\frac{n-3}{2} \right) ord_{p} \frac{a}{b} \right]$$

$$\ge \frac{1}{n-1} ord_{p} \left(\frac{s + \lambda_{2}t}{na + \lambda_{2}b} \right) - \left(\frac{n-3}{n-1} \right) \left[ord_{p} \frac{b}{a} + ord_{p} c \right]$$

By the proof of Lemma 2.1, $ord_p 2(na + \lambda_i b) = ord_p a$ for i = 1,2. Then

$$ord_{p}y \ge \frac{1}{n-1}ord_{p}(s+\lambda_{t}) - \frac{1}{n-1}ord_{p}a + \left(\frac{n-3}{n-1}\right)ord_{p}a,$$

$$-\left(\frac{n-3}{n-1}\right)\max\{ord_{p}b, ord_{p}c\}$$

$$\ge \frac{1}{n-1}\left[ord_{p}(s+\lambda_{t}) - (n-3)\max\{ord_{p}b, ord_{p}c\}\right], i = 1, 2.$$

By the same method for $ord_n x$ from equation (3), we have

$$ord_p y \ge \frac{1}{n-1} (\alpha - (n-3)\delta).$$

We will get the same result if min $\{ord_{p}s, ord_{p}\lambda_{2}t\} = ord_{p}\lambda_{i}t$ because

$$ord_{p}a < ord_{p}\lambda_{i}b$$
, $i=1,2$.

Therefore,

$$\operatorname{ord}_{p} x \ge \frac{1}{n-1} (\alpha - \delta) \ge \frac{1}{n-1} \operatorname{ord}_{p} (\alpha - (n-3)\delta) \text{ and } \operatorname{ord}_{p} y \ge \frac{1}{n-1} (\alpha - (n-3)\delta)$$

as asserted.

Theorem 2.5

Let $f(x,y)=ax^n+bx^{n-1}y+cx^{n-2}y^2+sx+ty+k$ be a polynomial in $Z_p[x,y]$ with p>n and n is odd. Let $\alpha>0$, $\delta=\max\{ord_pa,ord_pb,ord_pc\}$ and $ord_pb^2>ord_pac$.

If $\operatorname{ord}_p f_x(0,0), \operatorname{ord}_p f_y(0,0) \ge \alpha > \delta$ there exist (ξ,η) such that $f_x(\xi,\eta) = 0$, $f_y(\xi,\eta) = 0$ and $\operatorname{ord}_p \xi \ge \frac{1}{n-1} (\alpha - (n-3)\delta)$, $\operatorname{ord}_p \eta \ge \frac{1}{n-1} (\alpha - (n-3)\delta)$.

Proof

Let
$$g = f_x$$
 and $h = f_y$ and λ be a constant. Then,
 $(g + \lambda h)(x,y) = (na + \lambda b)x^{n-1} + ((n-1)b + 2\lambda c)x^{n-2}y + (n-2)cx^{n-3}y^2 + s + \lambda t$

and

$$\frac{(g+\lambda h)(x,y)}{na+\lambda b} = x^{n-1} + \left(\frac{(n-1)b+2\lambda c}{na+\lambda b}\right)x^{n-2}y + \left(\frac{(n-2)c}{na+\lambda b}\right)x^{n-3}y^2 + \frac{s+\lambda t}{na+\lambda b}$$
(1)

By completing the square in equation (1), we have

$$\frac{(g+\lambda h)(x,y)}{na+\lambda b} = \left(x^{\frac{n-1}{2}} + \frac{(n-1)b+2\lambda c}{2(na+\lambda b)}x^{\frac{n-3}{2}}y\right)^2 + \frac{s+\lambda t}{na+\lambda b}$$
(2)

if
$$\frac{(n-2)c}{na+\lambda b} - \left(\frac{(n-1)b+2\lambda c}{2(na+\lambda b)}\right)^2 = 0$$
.

That is,
$$4c^2\lambda^2 + 4bc\lambda + (n-1)^2b^2 - 4n(n-2)ac = 0$$
. (3)

From (3), we will get two values of λ , say λ_1 , λ_2 , where

$$\lambda_1 = \frac{-b + \sqrt{n(n-2)(4ac - b^2)}}{2c}$$
 and $\lambda_2 = \frac{-b - \sqrt{n(n-2)(4ac - b^2)}}{2c}$.

 $\lambda_1 \neq \lambda_2$, because $ord_p b^2 > ord_p ac$ of means that $b^2 \neq ac$.

Now, let

$$U = x^{\frac{n-1}{2}} + \frac{(n-1)b + 2\lambda c}{2(na + \lambda b)} x^{\frac{n-3}{2}} y,$$
(4)

$$V = x^{\frac{n-1}{2}} + \frac{(n-1)b + 2\lambda c}{2(na + \lambda b)} x^{\frac{n-3}{2}} y,$$
 (5)

$$F(U,V) = (g + \lambda_1 h)(x, y) \tag{6}$$

and
$$G(U,V) = (g + \lambda_2 h)(x,y)$$
. (7)

By substitution of U and V in (2), we obtain the following polynomials in (U,V)

$$F(U,V) = (na + \lambda_1 b)U^2 + s + \lambda_1 t \tag{8}$$

$$G(U,V) = (na + \lambda_2 b)V^2 + s + \lambda_2 t \tag{9}$$

The combination of the indicator diagrams associated with the Newton polyhedron of (8) and (9) takes the form shown in Figure 1.

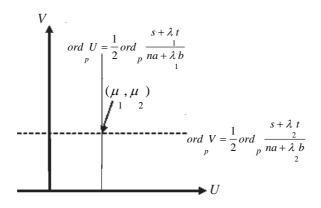


Figure 1: The indicator diagrams of $F(U,V)=(na+\lambda_1b)U^2+s+\lambda_1t$ and $G(U,V)=(na+\lambda_2b)V^2+s+\lambda_2t$

From Figure 1 and Theorem 2.1 there exists (\hat{U}, \hat{V}) in $\Omega_p \times \Omega_p$ such that $F(\hat{U}, \hat{V}) = 0$,

$$G(\hat{U}, \hat{V}) = 0$$
 and $ord_p \hat{U} = \mu_1$, $ord_p \hat{V} = \mu_2$ where $\mu_1 = \frac{1}{2} ord_p \frac{s + \lambda_1 t}{na + \lambda_1 b}$ and

$$\mu_2 = \frac{1}{2} \operatorname{ord}_p \frac{s + \lambda_2 t}{na + \lambda_2 b}$$

Suppose $U = \hat{U}$ and $V = \hat{V}$ in (4) and (5). There exists (x_0, y_0) such that

$$x_{0} = \left(\frac{\alpha_{1}\hat{V} - \alpha_{2}\hat{U}}{\alpha_{1} - \alpha_{2}}\right)^{\frac{2}{n-1}} \text{ and } y_{0} = \frac{\hat{U} - \hat{V}}{(\alpha_{1} - \alpha_{2})x_{0}^{\frac{n-3}{2}}}$$

with
$$\alpha_1 = \frac{(n-1)b + 2\lambda_1 c}{2(na + \lambda_1 b)}$$
, $\alpha_2 = \frac{(n-1)b + 2\lambda_2 c}{2(na + \lambda_2 b)}$ in which λ_1 , λ_2 are the zeros of

$$h(\lambda) = 4c^2\lambda^2 + 4bc\lambda + (n-1)^2b^2 - 4n(n-2)ac$$
 and $\alpha_1 \neq \alpha_2$ because of $\lambda_1 \neq \lambda_2$

From Theorem 2.4, we have

$$ord_{p_0} \ge \frac{1}{n-1} ord_{p_0} (\alpha - (n-3)\delta)$$
 and $ord_{p_0} \ge \frac{1}{n-1} (\alpha - (n-3)\delta)$

Let $\xi = x_0$ and $\eta = y_0$

Now, we show that $g(\xi,\eta)=f_x(\xi,\eta)=0$ and $h(\xi,\eta)=f_y(\xi,\eta)=0$.

From (6) and (7), we obtain $F(\hat{U}, \hat{V}) = (g + \lambda_1 h)(\xi, \eta)$ and $G(\hat{U}, \hat{V}) = (g + \lambda_2 h)(\xi, \eta)$.

Because of
$$F(\hat{U}, \hat{V}) = 0$$
, then $g(\xi, \eta) + \lambda_1 h(\xi, \eta) = 0$ (10)

Also
$$G(\hat{U}, \hat{V}) = 0$$
. Therefore $g(\xi, \eta) + \lambda_{\gamma} h(\xi, \eta) = 0$ (11)

Since $\lambda_1 \neq \lambda_2$ and from (10) and (11), $(\lambda_1 - \lambda_2)h(\xi, \eta) = 0$, we obtain $h(\xi, \eta) = 0$. Similarly $g(\xi, \eta) = 0$.

Then, $\operatorname{ord}_{p} \xi \geq \frac{1}{n-1} (\alpha - (n-3)\delta)$ and $\operatorname{ord}_{p} \eta \geq \frac{1}{n-1} (\alpha - (n-3)\delta)$ where (ξ, η) are the zeros of g and h and $\delta = \max\{\operatorname{ord}_{p} a, \operatorname{ord} pb, \operatorname{ord}_{p} c\}$.

We will get a sharper result if $ord_{p}a > ord_{p}b$, as written in the following theorem:

Theorem 2.6

Let $f(x,y)=ax^n+bx^{n-1}y+cx^{n-2}y^2+sx+ty+k$ be a polynomial in $Z_p[x,y]$ where p>n and n is odd. Let $\alpha>0$, $\delta=\max\{ord_pa,ord_pc\},ord_pb^2>ord_pac$ and $ord_pa>ord_pb$.

If $ord_n f_x(0,0), ord_n f_y(0,0) \ge \alpha > \delta$ there exists (ξ,η) such that $f_x(\xi,\eta) = 0, f_y(\xi,\eta) = 0$ and

$$ord_{p}\xi \ge \frac{1}{n-1}(\alpha - \delta)$$
, $ord_{p}\eta \ge \frac{1}{n-1}(\alpha - \delta)$

Proof

By proof of Theorems 2.4 and 2.5, there exists x_0 and y_0 such that

$$ord_{p} x_{0} \geq \frac{1}{n-1} (\alpha - \delta),$$

$$ord_{p}y_{0} \geq \frac{2}{n-1} \left[\frac{1}{2}ord_{p} \frac{s + \lambda_{i}t}{na + \lambda_{i}b} - \frac{1}{2}ord_{p} \frac{c}{a} + \left(\frac{n-3}{2}\right)ord_{p} \frac{a}{b} \right] i = 1, 2.$$

By proof of Lemma 2.1, $ord_{p} 2(na + \lambda_{i}b) = ord_{p} a$ for i = 1,2. Then

$$ord_{p} y_{0} \ge \frac{2}{n-1} \left[\frac{1}{2} ord_{p} (s + \lambda_{i} t) - \frac{1}{2} ord_{p} a \frac{1}{2} ord_{p} \frac{c}{a} - \left(\frac{n-3}{2} \right) ord_{p} \frac{b}{a} \right]$$

That is,

$$ord_{p} y_{0} \ge \frac{2}{n-1} \left[\frac{1}{2} ord_{p} (s+\lambda_{t}) - \frac{1}{2} ord_{p} c + \left(\frac{n-3}{2} \right) ord_{p} \frac{a}{b} \right]$$

where i = 1, 2.

By the hypothesis $ord_{p}a > ord_{p}b$, we have

$$ord_{p} y_{0} \ge \frac{2}{n-1} \left[\frac{1}{2} ord_{p} (s + \lambda_{i} t) - \frac{1}{2} ord_{p} c \right], i = 1, 2$$

Similarly, by the same method for $ord_{p}x$ from equation (3) in Theorem 2.4, we have

$$ord_{p} y_{0} \ge \frac{1}{n-1} (\alpha - \delta)$$

Suppose $\xi = x_0$ and $\eta = y_0$.

Hence.

$$\operatorname{ord}_{p} \xi \ge \frac{1}{n-1} (\alpha - \delta)$$
 and $\operatorname{ord}_{p} \eta \ge \frac{1}{n-1} (\alpha - \delta)$

where $\delta = \max\{ord_p a, ord_p b, ord_p c\}$ as asserted.

CONCLUSION

Our investigation shows that if p is an odd prime p>n, $f(x,y)=ax^n+bx^{n-1}y+cx^{n-2}y^2+sx+ty+k$ a polynomial in $Z_p[x,y]$ where n is odd, $\alpha>\delta$, $\delta=\max\{ord_p a, ord_p b, ord_p c\}$ and $ord_p b^2>ord_p ac$ then the p-adic sizes of the common zeros (ξ,η) of the partial derivatives of this polynomial is $ord_p \xi \geq \frac{1}{n-1}(\alpha-(n-3)\delta)$, $ord_p \eta \geq \frac{1}{n-1}(\alpha-(n-3)\delta)$. We obtain a sharper result if $ord_p a>ord_p b$, that is $ord_p \xi \geq \frac{1}{n-1}(\alpha-\delta)$, $ord_p \eta \geq \frac{1}{n-1}(\alpha-\delta)$ with $\delta=\max\{ord_p a, ord_p c\}$.

42

REFERENCES

- Chan, K.L. and K.A. Mohd. Atan. 1997. On the estimate to solutions of congruence equations associated with a quartic form. *Journal of Physical Science* 8: 21-34.
- HENG, S.H. and K.A. MOHD ATAN. 1999. An estimation of exponential sums associated with a cubic form. *Journal of Physical Science* **10**: 1-21.
- Koblitz, N. 1977. p-adic Numbers, p-adic analysis and zeta Function. New York: Springer-Verlag.
- LOXTON, J.H. and R.C. VAUGHN. 1985. The estimate of complete exponential sums. *Canad. Mth Bull.* **28(4):** 440-454.
- MOHD. ATAN, K.A. 1986. Newton polyhedral method of determining p-adic orders of zeros common to two polynomials in. *Pertanika* **9(3):** 375-380. Universiti Pertanian Malaysia.
- MOHD. ATAN, K.A. and I.B. ABDULLAH. 1992. Set of solution to congruences equations associated with cubic form. *Journal of Physical Science* **3:** 1-6.
- MOHD. ATAN, K.A. and J.H. LOXTON. 1986. Newton polyhedral and solutions of congruences. In *Diophantine Analysis*, ed. J.H. Loxton and A. Van der Poorten. Cambridge: Cambridge University Press.
- SAPAR, S.H. and K.A. MOHD ATAN. 2002. Estimate for the cardinality of the set of solution to congruence equations. *Journal of Technology* No. 36(C) (Malay): 13-40.